

MIL WebDNN

This is the WebDNN [https://mil-tokyo.github.io/webdnn/] documentation.

	GitHub [https://github.com/mil-tokyo/webdnn]

Contents

	Tutorial
	Introduction to WebDNN

	Framework structure

	Setup Guide (for Mac / Linux)

	Setup Guide (for Windows)

	Use with Keras Model

	Use with Caffemodel

	Use with Chainer Model

	Tips
	EcmaScript5 support

	Using web camera in Safari

	API Reference
	Graph Transpiler

Tutorial

	Introduction to WebDNN
	Installation-free

	Non overhead interface

	Inference-phase-specialized optimization

	Framework structure

	Setup Guide (for Mac / Linux)
	Downloading code

	Installing WebGPU environment

	Installing python package

	Installing Emscripten and Eigen

	Notes on python environment

	Setup Guide (for Windows)
	Downloading code

	Installing python environment

	Installing Emscripten and Eigen

	Setting for using proper python

	Verification of Emscripten and Eigen installation

	Installing graph transpiler

	Running example

	Use with Keras Model

	Use with Caffemodel
	1. Convert Caffemodel into GraphDescriptor

	2. Run on web browser

	Use with Chainer Model

Introduction to WebDNN

Recently, deep neural network (DNN) is attracting a lot of attention in various fields such as image and video recognition, natural language processing and gaming AI. In these fields, DNNs are applied for various products. However, DNNs are computationally expensive and generally hardware acceleration is required for its execution, and so it is not practical to execute DNN on end-user devices such as laptops or smartphones.

One of the solutions to this is cloud computing. As another solution, WebDNN highly optimizes the DNN models and executes them on the web browsers in end-user devices.

Key features of WebDNN are the follows.

	Installation-free

	Non overhead interface

	Inference-phase-specialized optimization

Installation-free

WebDNN executes DNN models on a web browser. Usually, web browsers are already installed on end-user devices already and users are familiar with how to use it. Therefore, using WebDNN, DNN applications can be provided easily, without any difficulty in installing a native application.

There are a few number of major web browsers, and they have different set of features that can be used for acceleration. WebDNN have several sterategies to execute DNN model as speedy as possible in each web browser.

Non overhead interface

JavaScript is a standard programing language running on web browsers. It is executed by an interpreter. Therefore, it requires computing overhead and it cannot completely harness the capacity of the CPU. The same problem is encountered in GPU. Modern web browsers support WebGL, which is a JavaScript API to use GPU. However, this API is designed for graphics processing and is not suitable for general purpose computation. In addition, using WebGL for general purpose computing incurs overhead costs.

WebDNN uses next generation JavaScript API, WebGPU for GPU execution, and WebAssembly for CPU execution. These APIs help to bring out the full performance of GPU and CPU.

Inference-phase-specialized optimization

To achieve speedier execution, optimizing the computation graph of DNN models is very important. Execution of DNN consists of two phases, the training phase and the inference phase, and they requires different optimization sterategies. WebDNN focuses on only the inference phase execution on end-user devices and supports aggressive optimization. This optimization pipeline can be applied for models trained with various DNN frameworks. It is not required to edit the training codes.

Framework structure

[image: Pipeline]

WebDNN consists of two modules - the graph transpiler, which transpiles and optimizes trained model into an executable format on the web browser and the descriptor runner, which executes the converted model on the web browser.

Graph transpiler is the offline module to transpile the model. It is implemented in python (version 3.6) and only application developers need to run it. It outputs the ‘graph descriptor’ files, which consist of JavaScript and binary weight data.

Descriptor runner is the online module to run the graph descriptor on the web browser of the end-users. It is JavaScript files. Application developers have to use the API provided by the library to supply input to the model and display output.

Setting up the application development environment is described in setup page. You can find examples of steps to use models from Caffe, Keras, Chainer in WebDNN in the example directory.

Setup Guide (for Mac / Linux)

For Windows users, jump to setup_windows

Downloading code

git clone https://github.com/mil-tokyo/webdnn

Installing WebGPU environment

WebDNN runs fastest on browsers which support WebGPU. Currently, only Safari Technology Preview on macOS supports it.

https://developer.apple.com/safari/technology-preview/

If you don’t have such environment, WebAssembly backend can be used.
It is supported by most modern browsers.
(Note: IE and Safari does not support WebAssembly, but asm.js code is automatically generated along with WebAssembly code, and gives similar performance.)

Installing python package

This framework requires python3.6+.

cd webdnn
python3 setup.py install

This will install webdnn.

If you want to convert models of Caffe or Chainer, install chainer package.

pip install chainer

(Currently, tested with chainer==2.0 and chainer==1.23)

Installing Emscripten and Eigen

If you want to enable WebAssembly backend, em++ command from Emscripten [https://github.com/kripken/emscripten] is required. You can skip this section if you try WebGPU backend only.

To setup Emscripten which supports WebAssembly,

git clone https://github.com/juj/emsdk.git
cd emsdk
./emsdk install sdk-incoming-64bit binaryen-master-64bit
./emsdk activate sdk-incoming-64bit binaryen-master-64bit

(see also http://webassembly.org/getting-started/developers-guide/)

To enable em++ command, you need to type command on the shell.

source ./emsdk_env.sh

Eigen [http://eigen.tuxfamily.org] is needed as the library.

wget http://bitbucket.org/eigen/eigen/get/3.3.3.tar.bz2
tar jxf 3.3.3.tar.bz2

To enable Eigen to be included on compile, you need to type command on the shell.

export CPLUS_INCLUDE_PATH=$PWD/eigen-eigen-67e894c6cd8f

Notes on python environment

Emscripten requires python2 command, you need to setup python environment which python (or python3) is python 3.6+ and python2 is python 2.7. pyenv [https://github.com/pyenv/pyenv] may help to setup such environment (see also [https://github.com/pyenv/pyenv/blob/master/COMMANDS.md#pyenv-global-advanced]).

Setup Guide (for Windows)

No browser on Windows supports WebGPU, but you can still develop applications using WebDNN. Commands have to be used on command prompt.

Downloading code

git clone https://github.com/mil-tokyo/webdnn

If you do not have git, zip file is also available: https://github.com/mil-tokyo/webdnn/archive/master.zip

Installing python environment

If you do not have python environment, install python environment.

Anaconda is the popular installer: https://www.continuum.io/downloads

When installing, adding PATH to system is optional.

This framework requires python3.6+. This document is based on Anaconda 4.4.0.

If you want to convert models of Caffe or Chainer, install chainer package. Refer to Chainer document [http://docs.chainer.org/en/stable/install.html].

(Currently, tested with chainer==2.0 and chainer==1.23)

Installing Emscripten and Eigen

If you want to enable WebAssembly backend, em++ command from Emscripten [https://github.com/kripken/emscripten] is required. You can skip this section if you try WebGPU backend only.

To setup Emscripten which supports WebAssembly,

Download “Emscripten SDK Offline Installer (emsdk-1.35.0-full-64bit.exe)” from http://kripken.github.io/emscripten-site/docs/getting_started/downloads.html.

When installing, you should add PATH of emcc to PATH, but PATH of python should not be added (as it conflicts with Anaconda).

Eigen [http://eigen.tuxfamily.org] is needed as the library. Download latest source from http://eigen.tuxfamily.org/index.php?title=Main_Page and decompress.

Setting for using proper python

python environment (3.6.x) of Anaconda have to be executed with python3 command. To accompilsh it, create a file named python3.bat and fill with the following content.

"C:\ProgramData\Anaconda3\python.exe" %*

python environment (2.7.x) of Anaconda have to be executed with python command. To accompilsh it, create a file named python.bat and fill with the following content.

set CPLUS_INCLUDE_PATH=PATH\TO\EIGEN
"C:\Program Files\Emscripten\python\2.7.5.3_64bit\python.exe" %*

Concrete path depends on the version of Emscripten and installer configuration. PATH\TO\EIGEN have to be replaced by the directory where Eigen is downloaded. The file PATH\TO\EIGEN\Eigen\Dense should exists.

Verification of Emscripten and Eigen installation

Create a file named hello.cpp:

#include <Eigen/Dense>
#include <iostream>

int main()
{
 std::cout << "hello world" << std::endl;
 return 0;
}

Then, try to compile it into WebAssembly:

em++ hello.cpp -O3 -s WASM=1 -o hello.html

If Emscripten works well, files such as hello.wasm, hello.html are generated.

Installing graph transpiler

Install graph transpiler for Anaconda python environment.

At the top directory of WebDNN is cloned, type

python3 setup.py install

Here, python3.bat have to exist on the current directory.

Running example

cd example\mnist
python3 train_mnist_chainer.py

Here, python3.bat, python.bat have to exist on the current directory.

Graph descriptor files for each backend are generated.

In Emscripten 1.35, files before.js, load-wasm-worker.js seem to be generated on current directory (it seems that latest Emscripten for linux does not require them). You have to move them to the output directory.

Use with Keras Model

In this tutorial, we’ll convert ResNet50 [1] classification model
pretrained in Keras [2] into WebDNN execution format.

	Export Keras pretrained model

from keras.applications import resnet50
model = resnet50.ResNet50(include_top=True, weights='imagenet')
model.save("resnet50.h5")

	Convert Keras model to our computation graph format

python bin/convert_keras.py resnet50.h5 --input_shape '(1,224,224,3)' --out output

At least you need to specify the model file and the shape of input array.

Now you have the “graph descriptor” to execute on the web browsers in output directory.

	Run on web browser

This document illustrates the essence of running the “graph descriptor” to execute on the web browsers.
In convert_keras example directory, the complete codes for training and converting a Keras model and running it on the web browsers can be found.

First, You have to initialize DescriptorRunner
and load model data.

let runner = await WebDNN.load('./output');

WebDNN automatically select the best backend based on Browser type and
compiled model data on the server.

You can check the backend type

console.log(runner.backendName);

[image: backend]

Then you can get input and output variable references (SymbolicFloat32Array type).

let x = runner.getInputViews()[0];
let y = runner.getOutputViews()[0];

That’s all for initialization. You only have to do this at once in the application.

Let’s classify this image.

[image: sample image]

First, set input data.

// loadImageData() returns image data as Float32Array
x.set(loadImageData());

Next, run model.

await runner.run();

That’s all.

Show computed vector and predicted label.

let y_typed_array = y.toActual();
console.log('Computed vector', y_typed_array);
console.log('Predicted Label', WebDNN.Math.argmax(y_typed_array));

[image: result]

Congratulation! LabelID:779 is "School bus" in ImageNet. It looks work well.

References

	[1]	
	He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition”, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

	[2]	https://keras.io/applications/#resnet50

Use with Caffemodel

In this section, you will learn about how to convert your caffemodel
into GraphDescriptor, and run GraphDescriptor on your web page.

1. Convert Caffemodel into GraphDescriptor

See jupyter notebook (caffenet_conversion.ipynb [https://github.com/mil-tokyo/mil-web-dnn/blob/master/example/convert_caffe/caffenet_conversion.ipynb]) to see how to convert model offline.

2. Run on web browser

In this section, I’ll describe how to run generated descriptor on web browser.
you can view complete codes (HTML and JS file) in /example/convert_caffe.

First, You have to initialize DescriptorRunner
and load model data.

let runner = await WebDNN.load('./output');

WebDNN automatically select the best backend based on Browser type and
compiled model data on the server.

You can check the backend type

console.log(runner.backendName);

[image: backend]

Then you can get input and output variable references (SymbolicFloat32Array type).

let x = runner.getInputViews()[0];
let y = runner.getOutputViews()[0];

That’s all for initialization. You only have to do this at once in the application.

Let’s classify this image.

[image: sample image]

First, set input data.

// loadImageData() returns image data as Float32Array
x.set(loadImageData());

Next, run model.

await runner.run();

That’s all.

Show computed vector and predicted label.

let y_typed_array = y.toActual();
console.log('Computed vector', y_typed_array);
console.log('Predicted Label', WebDNN.Math.argmax(y_typed_array));

[image: result]

Congratulation! LabelID:230 is "Shetland sheepdog" in ImageNet. It looks work well.

Use with Chainer Model

In this tutorial, we’ll convert ResNet50 [1] classification model
pretrained in Chainer [2] into WebDNN execution format.

	Load chainer pretrained model

import chainer

model = chainer.links.model.vision.resnet.ResNet50Layers()

	Execute model with dummy data. In chainer, computation graph are defined by
run. Therefore we need execute model at least once to construct the graph.

import numpy as np

x = chainer.Variable(np.empty((1, 3, 224, 224), dtype=np.float32))
y = model(x, layers=["fc6"])["fc6"]

	Convert chainer computation graph to our computation graph format

from webdnn.frontend.chainer import ChainerGraphConverter

graph = ChainerGraphConverter().convert_from_inout_vars([x], [y])

	Generate and save execution information.

from webdnn.backend.interface.generator import generate_descriptor

exec_info = generate_descriptor("webgpu", graph)
exec_info.save("./output")

References

	[1]	
	He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition”, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

	[2]	http://docs.chainer.org/en/latest/reference/links.html#chainer.links.ResNet50Layers

Tips

	EcmaScript5 support
	Use webdnn.es5.js and polyfill

	Converting your own code

	Using web camera in Safari
	Background

	Flash player

	Security setting for camera

EcmaScript5 support

In some cases, you want to support older browser such as IE11, which is the default browser for Windows 7 and 8. To support IE11, the JavaScript code have to be compliant with EcmaScript5. In this document, how to convert the code is described.

Use webdnn.es5.js and polyfill

In syntax level, webdnn.js uses statements like await, which is not compatible with EcmaScript5. Instead, you can use webdnn.es5.js which does not use such statements. This library can be compiled with tsc -p tsconfig.es5.js on src/descriptor_runner directory.

In standard library level, webdnn.js uses Promise and fetch. You need to supply these objects by loading polyfill.

In colusion, you need to insert the following statements in the html.

<script src="https://cdnjs.cloudflare.com/ajax/libs/babel-polyfill/6.23.0/polyfill.min.js"></script>
<script src="https://cdn.polyfill.io/v2/polyfill.min.js?features=fetch"></script>
<script src="../../lib/inflate.min.js"></script>
<script src="../../dist/webdnn.es5.js"></script>

Converting your own code

If your own JavaScript code uses newer statements like await, you can also convert it automatically by babel [https://babeljs.io/].

Install babel

npm install babel-cli babel-preset-env babel-preset-es2015 babel-plugin-transform-regenerator

Converting your code

babel foo.js --out-file foo.es5.js --presets env,es2015 --plugins transform-regenerator

Using web camera in Safari

Background

Most modern web browsers support WebRTC, which supports easy access to camera from web page scripts.
However, Safari (on Mac) does not support WebRTC, so the workaround is to use Flash.

There is a good library “webcamjs [https://github.com/jhuckaby/webcamjs]” to wrap the browser difference. To make this library to work, security setting is needed. This document describes how to change the setting.

Flash player

You need to install and enable Flash player on the target website first.

Visit official instruction:
https://helpx.adobe.com/flash-player/kb/enabling-flash-player-safari.html

Security setting for camera

When you visit a website that want to access your camera, special permission is needed.

If you are lucky, you have only to click “Allow” button.
[image: Allow button]

Sometimes, the button does not work. In this case, you need to change the setting from “System Preferences”.

	Open Flash Player
[image: Flash Player]

	Click “Camera and Mic” tab and open “Camera and Microphone Settings by Site...” dialog
[image: Camera and Mic]

	Change configuration to “Allow” for target website
[image: Allow]

API Reference

	Graph Transpiler
	Base Classes

	Operators

	Variables

	Optimize Rules

Descriptor Runner

Graph Transpiler

	Base Classes
	Graph

	Operator

	Variable

	Attribute

	Axis

	Order

	Placeholder

	OptimizeRule

	Operators
	AveragePooling2D

	AxiswiseBias

	AxiswiseScale

	Concat

	Convolution2D

	Deconvolution2D

	ElementwiseSum

	Elu

	Flatten

	Linear

	LocalResponseNormalization

	MaxPooling2D

	Relu

	ScalarAffine

	Sigmoid

	Softmax

	Tanh

	Variables
	ConstantVariable

	Optimize Rules

Base Classes

Graph

Operator

Variable

Attribute

Axis

Order

Placeholder

OptimizeRule

Operators

AveragePooling2D

AxiswiseBias

AxiswiseScale

Concat

Convolution2D

Deconvolution2D

ElementwiseSum

Elu

Flatten

Linear

LocalResponseNormalization

MaxPooling2D

Relu

ScalarAffine

Sigmoid

Softmax

Tanh

Variables

ConstantVariable

Optimize Rules

FIXME: DOCS

Index

 _static/tips/safari_webcam_1.png
System Preferences

Flash Player
Flash Player settings

Flash Player local data

Flash screen for alerts

Flash Player media playback
Flash Player privacy settings

_static/tips/safari_webcam_3.png
® Flash Player

Camera and Microphone Settings by Site
Previously visited websites that have asked to use the camera or microphone are listed below.

‘You can allow or block the use of the camera and microphone by specific sites. Remove a site to
delete all settings and data for that site in Flash Player.

Website
ast.ec.quoracdn.net

mmmzy.jp
cdn-sslyi

www.paypalobjects.com
cdn.stickyadstv.com
localhost

analytics.twitter.com
ssl.kaptcha.com
tai

6660000000

+|- Close

_images/safari_webcam_2.png
000 < Flash Player Q search

Storage aand Mi

Playback Updates Advanced

‘Camera and Microphone Settings

(© Ask me when a site wants to use the camera or microphone (recommended)
Block all sites from using the camera and microphone

‘Camera and Microphone Settings by Sit

‘The settings on this page are not applicable to Google Chrome or Chromium based
browsers (PPAPI).

Learn more about configuring Flash Player with Chromium based browsers

_images/check_backend.png
> runner.backendName
< "webgpu" = $1

_images/result_keras.png
e0e < localhost [u] a » &

ResNet-50 conversion WebDNN example

You have to convert ResNet-50 with python script before running this webpage.
Image URL:
.datajschool_bus pg

Load image
Using canvas's image slightly changes the output due to interpolation.
Run @auto Cwebgpu ~ webassembly *fallback (slow; debug only)

Image loaded to canvas
Initializing and loading model

Loaded backend: webgpu

Predicted: 779(school bus) 803(snowplow, snowplough) 654(minibus) 874(trolleybus,
trolley coach, trackless trolley) 468(cab, hack, taxi, taxicab)

Total Elapsed Time[ms/image]: 167.70

Run finished

nav.xhtml

 Table of Contents

 		MIL WebDNN

 		Tutorial

 		Introduction to WebDNN

 		Installation-free

 		Non overhead interface

 		Inference-phase-specialized optimization

 		Framework structure

 		Setup Guide (for Mac / Linux)

 		Downloading code

 		Installing WebGPU environment

 		Installing python package

 		Installing Emscripten and Eigen

 		Notes on python environment

 		Setup Guide (for Windows)

 		Downloading code

 		Installing python environment

 		Installing Emscripten and Eigen

 		Setting for using proper python

 		Verification of Emscripten and Eigen installation

 		Installing graph transpiler

 		Running example

 		Use with Keras Model

 		Use with Caffemodel

 		1. Convert Caffemodel into GraphDescriptor

 		2. Run on web browser

 		Use with Chainer Model

 		Tips

 		EcmaScript5 support

 		Use webdnn.es5.js and polyfill

 		Converting your own code

 		Using web camera in Safari

 		Background

 		Flash player

 		Security setting for camera

 		API Reference

 		Graph Transpiler

 		Base Classes

 		Operators

 		Variables

 		Optimize Rules

_images/safari_webcam_4.png
localhost

Initializing

_images/safari_webcam_1.png
System Preferences

Flash Player
Flash Player settings

Flash Player local data

Flash screen for alerts

Flash Player media playback
Flash Player privacy settings

_images/result.png
000 < g 0.0.0.0 &] 7 .

WebDNN: CaffeNet Minimal Example

Image URL: ..;./resources/imagenet/ILSVRC2012_val_00000003.JPEG

Load image Run

x [(RN MNe M23s1me D1.21s B2 & Qv Search
X Elements @ Network [\ Resources {I} Debugger %] Console @ Timelines + &
Q Filter Console Log Errors Warnings Logs C) Pﬁ

Console cleared at 3:43:08

» Computed vector - Float32Array [-2.46597957611084, 2.1521565914154053, -0.22312051057815552, ..] (1000) minimal.js:26
Predicted Label - [230] (1) minimal.js:27

>

_images/sample_image.jpeg

_images/pipeline.png
]

Model Definition
(Caffe, Keras, etc.)

=

Trained Parameters

Graph Transpiler

Model Converter

S-S

Optlmlzatlon Rules

Optimized IR

Kemel Generator

yan

Graph Descriptor

N
=

Optimized Parameters

‘Web Browser

Descriptor Runner

GPU CPU

_static/minus.png

_images/safari_webcam_3.png
® Flash Player

Camera and Microphone Settings by Site
Previously visited websites that have asked to use the camera or microphone are listed below.

‘You can allow or block the use of the camera and microphone by specific sites. Remove a site to
delete all settings and data for that site in Flash Player.

Website
ast.ec.quoracdn.net

mmmzy.jp
cdn-sslyi

www.paypalobjects.com
cdn.stickyadstv.com
localhost

analytics.twitter.com
ssl.kaptcha.com
tai

6660000000

+|- Close

_images/sample_image2.jpeg

_static/up-pressed.png

_static/comment-bright.png

_static/file.png

_static/comment-close.png

_static/down.png

_static/ajax-loader.gif

_static/up.png

_static/down-pressed.png

_static/comment.png

_static/tutorial/check_backend.png
> runner.backendName
< "webgpu" = $1

_static/plus.png

_static/tutorial/sample_image.jpeg

_static/tutorial/sample_image2.jpeg

_static/tutorial/result_keras.png
e0e < localhost [u] a » &

ResNet-50 conversion WebDNN example

You have to convert ResNet-50 with python script before running this webpage.
Image URL:
.datajschool_bus pg

Load image
Using canvas's image slightly changes the output due to interpolation.
Run @auto Cwebgpu ~ webassembly *fallback (slow; debug only)

Image loaded to canvas
Initializing and loading model

Loaded backend: webgpu

Predicted: 779(school bus) 803(snowplow, snowplough) 654(minibus) 874(trolleybus,
trolley coach, trackless trolley) 468(cab, hack, taxi, taxicab)

Total Elapsed Time[ms/image]: 167.70

Run finished

_static/tutorial/result.png
000 < g 0.0.0.0 &] 7 .

WebDNN: CaffeNet Minimal Example

Image URL: ..;./resources/imagenet/ILSVRC2012_val_00000003.JPEG

Load image Run

x [(RN MNe M23s1me D1.21s B2 & Qv Search
X Elements @ Network [\ Resources {I} Debugger %] Console @ Timelines + &
Q Filter Console Log Errors Warnings Logs C) Pﬁ

Console cleared at 3:43:08

» Computed vector - Float32Array [-2.46597957611084, 2.1521565914154053, -0.22312051057815552, ..] (1000) minimal.js:26
Predicted Label - [230] (1) minimal.js:27

>

_static/tips/safari_webcam_4.png
localhost

Initializing

_static/tutorial/pipeline.png
]

Model Definition
(Caffe, Keras, etc.)

=

Trained Parameters

Graph Transpiler

Model Converter

S-S

Optlmlzatlon Rules

Optimized IR

Kemel Generator

yan

Graph Descriptor

N
=

Optimized Parameters

‘Web Browser

Descriptor Runner

GPU CPU

_static/tips/safari_webcam_2.png
000 < Flash Player Q search

Storage aand Mi

Playback Updates Advanced

‘Camera and Microphone Settings

(© Ask me when a site wants to use the camera or microphone (recommended)
Block all sites from using the camera and microphone

‘Camera and Microphone Settings by Sit

‘The settings on this page are not applicable to Google Chrome or Chromium based
browsers (PPAPI).

Learn more about configuring Flash Player with Chromium based browsers

