
MIL WebDNN Documentation
Release 1.0.0

MIL

Jul 09, 2017

Contents

1 Contents 3

i

ii

MIL WebDNN Documentation, Release 1.0.0

This is the WebDNN documentation.

Contents 1

https://mil-tokyo.github.io/webdnn/

MIL WebDNN Documentation, Release 1.0.0

2 Contents

CHAPTER 1

Contents

Tutorial

Introduction to WebDNN

Recently, deep neural network (DNN) is attracting a lot of attention in various fields such as image and video recog-
nition, natural language processing and gaming AI. In these fields, DNNs are applied for various products. However,
DNNs are computationally expensive and generally hardware acceleration is required for its execution, and so it is not
practical to execute DNN on end-user devices such as laptops or smartphones.

One of the solutions to this is cloud computing. As another solution, WebDNN highly optimizes the DNN models and
executes them on the web browsers in end-user devices.

Key features of WebDNN are the follows.

• Installation-free

• Non overhead interface

• Inference-phase-specialized optimization

Installation-free

WebDNN executes DNN models on a web browser. Usually, web browsers are already installed on end-user devices
already and users are familiar with how to use it. Therefore, using WebDNN, DNN applications can be provided
easily, without any difficulty in installing a native application.

There are a few number of major web browsers, and they have different set of features that can be used for acceleration.
WebDNN have several sterategies to execute DNN model as speedy as possible in each web browser.

Non overhead interface

JavaScript is a standard programing language running on web browsers. It is executed by an interpreter. Therefore,
it requires computing overhead and it cannot completely harness the capacity of the CPU. The same problem is

3

MIL WebDNN Documentation, Release 1.0.0

encountered in GPU. Modern web browsers support WebGL, which is a JavaScript API to use GPU. However, this
API is designed for graphics processing and is not suitable for general purpose computation. In addition, using WebGL
for general purpose computing incurs overhead costs.

WebDNN uses next generation JavaScript API, WebGPU for GPU execution, and WebAssembly for CPU execution.
These APIs help to bring out the full performance of GPU and CPU.

Inference-phase-specialized optimization

To achieve speedier execution, optimizing the computation graph of DNN models is very important. Execution of
DNN consists of two phases, the training phase and the inference phase, and they requires different optimization
sterategies. WebDNN focuses on only the inference phase execution on end-user devices and supports aggressive
optimization. This optimization pipeline can be applied for models trained with various DNN frameworks. It is not
required to edit the training codes.

Framework structure

WebDNN consists of two modules - the graph transpiler, which transpiles and optimizes trained model into an exe-
cutable format on the web browser and the descriptor runner, which executes the converted model on the web browser.

Graph transpiler is the offline module to transpile the model. It is implemented in python (version 3.6) and only
application developers need to run it. It outputs the ‘graph descriptor’ files, which consist of JavaScript and binary
weight data.

Descriptor runner is the online module to run the graph descriptor on the web browser of the end-users. It is JavaScript
files. Application developers have to use the API provided by the library to supply input to the model and display
output.

Setting up the application development environment is described in setup page. You can find examples of steps to use
models from Caffe, Keras, Chainer in WebDNN in the example directory.

Setup Guide

Downloading code

git clone https://github.com/mil-tokyo/webdnn

Installing WebGPU environment

WebDNN runs fastest on browsers which support WebGPU. Currently, only Safari Technology Preview on macOS
supports it.

https://developer.apple.com/safari/technology-preview/

4 Chapter 1. Contents

MIL WebDNN Documentation, Release 1.0.0

If you don’t have such environment, WebAssembly backend can be used. It is supported by most modern browsers.
(Note: IE and Safari does not support WebAssembly, but asm.js code is automatically generated along with We-
bAssembly code, and gives similar performance.)

Installing python package

This framework requires python3.6+.

cd webdnn
python3 setup.py install

This will install webdnn.

If you want to convert models of Caffe or Chainer, install chainer package.

pip install chainer

(Currently, tested with chainer==1.23)

Installing Emscripten and Eigen

If you want to enable WebAssembly backend, em++ command from Emscripten is required. You can skip this section
if you try WebGPU backend only.

To setup Emscripten which supports WebAssembly,

git clone https://github.com/juj/emsdk.git
cd emsdk
./emsdk install sdk-incoming-64bit binaryen-master-64bit
./emsdk activate sdk-incoming-64bit binaryen-master-64bit

(see also http://webassembly.org/getting-started/developers-guide/)

To enable em++ command, you need to type command on the shell.

source ./emsdk_env.sh

Eigen is needed as the library.

wget http://bitbucket.org/eigen/eigen/get/3.3.3.tar.bz2
tar jxf 3.3.3.tar.bz2

To enable Eigen to be included on compile, you need to type command on the shell.

export CPLUS_INCLUDE_PATH=$PWD/eigen-eigen-67e894c6cd8f

Notes on python environment

Emscripten requires python2 command, you need to setup python environment which python (or python3) is
python 3.6+ and python2 is python 2.7. pyenv may help to setup such environment (see also).

Use with Caffemodel

In this section, you will learn about how to convert your caffemodel into GraphDescriptor, and run
GraphDescriptor on your web page.

1.1. Tutorial 5

https://github.com/kripken/emscripten
http://eigen.tuxfamily.org
https://github.com/pyenv/pyenv
https://github.com/pyenv/pyenv/blob/master/COMMANDS.md#pyenv-global-advanced

MIL WebDNN Documentation, Release 1.0.0

1. Convert Caffemodel into GraphDescriptor

See jupyter notebook (caffenet_conversion.ipynb) to see how to convert model offline.

2. Run on web browser

In this section, I’ll describe how to run generated descriptor on web browser. you can view complete codes (HTML
and JS file) in /example/convert_caffe.

First, You have to initialize DescriptorRunner and load model data.

let runner = await runner.prepareAll('./output');

WebDNN automatically select the best backend based on Browser type and compiled model data on the server.

You can check the backend type

console.log(runner.backendName);

Then you can get input and output variable references.

let x = runner.inputViews[0];
let y = runner.outputViews[0];

That’s all for initialization. You only have to do this at once in the application.

Let’s classify this image.

First, set input data.

6 Chapter 1. Contents

https://github.com/mil-tokyo/mil-web-dnn/blob/master/example/convert_caffe/caffenet_conversion.ipynb

MIL WebDNN Documentation, Release 1.0.0

// loadImageData() returns image data as Float32Array
x.set(loadImageData());

Next, run model.

await runner.run();

That’s all.

Show computed vector and predicted label.

console.log('Computed vector', y);
console.log('Predicted Label', WebDNN.Math.argmax(y));

Congratulation! LabelID:230 is "Shetland sheepdog" in ImageNet. It looks work well.

1.1. Tutorial 7

MIL WebDNN Documentation, Release 1.0.0

Use with Chainer Model

In this tutorial, we’ll convert ResNet501 classification model pretrained in Chainer2 into WebDNN execution format.

1. Load chainer pretrained model

import chainer

model = chainer.links.model.vision.resnet.ResNet50Layers()

2. Execute model with dummy data. In chainer, computation graph are defined by run. Therefore we need execute
model at least once to construct the graph.

import numpy as np

x = chainer.Variable(np.empty((1, 3, 224, 224), dtype=np.float32))
y = model(x, layers=["fc6"])["fc6"]

3. Convert chainer computation graph to our computation graph format

from webdnn.graph.converters.chainer import ChainerGraphConverter

graph = ChainerGraphConverter().convert_from_inout_vars([x], [y])

4. Generate and save execution information.

from webdnn.backend.interface.generator import generate_descriptor

exec_info = generate_descriptor("webgpu", graph)
exec_info.save("./output")

References

Tips

EcmaScript5 support

In some cases, you want to support older browser such as IE11, which is the default browser for Windows 7 and 8. To
support IE11, the JavaScript code have to be compliant with EcmaScript5. In this document, how to convert the code
is described.

Use webdnn.es5.js and polyfill

In syntax level, webdnn.js uses statements like await, which is not compatible with EcmaScript5. Instead, you can
use webdnn.es5.jswhich does not use such statements. This library can be compiled with tsc -p tsconfig.
es5.js on src/descriptor_runner directory.

In standard library level, webdnn.js uses Promise and fetch. You need to supply these objects by loading
polyfill.

1

11. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition”, IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

2 http://docs.chainer.org/en/latest/reference/links.html#chainer.links.ResNet50Layers

8 Chapter 1. Contents

http://docs.chainer.org/en/latest/reference/links.html#chainer.links.ResNet50Layers

MIL WebDNN Documentation, Release 1.0.0

In colusion, you need to insert the following statements in the html.

<script src="https://cdnjs.cloudflare.com/ajax/libs/babel-polyfill/6.23.0/polyfill.
→˓min.js"></script>
<script src="https://cdn.polyfill.io/v2/polyfill.min.js?features=fetch"></script>
<script src="../../lib/inflate.min.js"></script>
<script src="../../build/descriptor_runner/webdnn.es5.js"></script>

Converting your own code

If your own JavaScript code uses newer statements like await, you can also convert it automatically by babel.

Install babel

npm install babel-cli babel-preset-env babel-preset-es2015 babel-plugin-transform-
→˓regenerator

Converting your code

babel foo.js --out-file foo.es5.js --presets env,es2015 --plugins transform-
→˓regenerator

Using web camera in Safari

Background

Most modern web browsers support WebRTC, which supports easy access to camera from web page scripts. However,
Safari (on Mac) does not support WebRTC, so the workaround is to use Flash.

There is a good library “webcamjs” to wrap the browser difference. To make this library to work, security setting is
needed. This document describes how to change the setting.

Flash player

You need to install and enable Flash player on the target website first.

Visit official instruction: https://helpx.adobe.com/flash-player/kb/enabling-flash-player-safari.html

Security setting for camera

When you visit a website that want to access your camera, special permission is needed.

1.2. Tips 9

https://babeljs.io/
https://github.com/jhuckaby/webcamjs
https://helpx.adobe.com/flash-player/kb/enabling-flash-player-safari.html

MIL WebDNN Documentation, Release 1.0.0

If you are lucky, you have only to click “Allow” button.

Sometimes, the button does not work. In this case, you need to change the setting from “System Preferences”.

10 Chapter 1. Contents

MIL WebDNN Documentation, Release 1.0.0

1. Open Flash Player

2. Click “Camera and Mic” tab and open “Camera and Microphone Settings by Site...” dialog

1.2. Tips 11

MIL WebDNN Documentation, Release 1.0.0

3. Change configuration to “Allow” for target website

API Reference

Graph Builder

Base Classes

Graph

12 Chapter 1. Contents

MIL WebDNN Documentation, Release 1.0.0

Operator

Variable

Attribute

Axis

Order

OptimizeRule

Operators

AveragePooling2D

AxiswiseBias

AxiswiseScale

Concat

Convolution2D

Deconvolution2D

ElementwiseSum

Elu

Flatten

Linear

LocalResponseNormalization

MaxPooling2D

Relu

ScalarAffine

Sigmoid

Softmax

1.3. API Reference 13

MIL WebDNN Documentation, Release 1.0.0

Tanh

Variables

ConstantVariable

Optimize Rules

FIXME: DOCS

Descriptor Runner

14 Chapter 1. Contents

	Contents

